

Compost Operators Training Certificate Course

Overview

- Characteristics of Materials
- Material Generation Rates
- Collection Options
- Commingling Materials
- Collection Equipment Options
- **❖Food Waste Collection**

Introduction

- Goal: Maximize diversion from landfill
 - ❖Leave, grass, brush
 - Food waste, wood waste, non-recyclable or soiled paper, biosolids
- Considerations
 - How much volumes is out there?
 - How much can be feasibly composted?
 - What are the material characteristics?
 - ❖How will I collect and transport this material?

Landfilling Impact

- Material set to a landfill will decompose anaerobically
- **❖** Anaerobic decomposition releases CH₄ into the atmosphere
- **♦ CH₄** is 23X worse than CO₂ so the Food Waste we generate and compost REALLY MATTERS

The Numbers Behind Your Food Waste

Food waste represents 25% of US methane emissions

1 ton Methane = 12 tons CO₂ Equivalent

Sustainable waste management, reduction, and disposal practices are a valuable piece of the supply chain.

1/3 of MSW

is food-related waste

5 lbs

per day, per person (5)

Equivalent of \$165 Billion Per Year

A closed system is a good place to start a zero waste campaign

AGRICULTURE POSTHARVEST PROCESSING DISTRIBUTION CONSUMER

FOOD WASTE PILES UP
THROUGHOUT THE CHAIN, BUT WE
THE MOST AT THE CONSUMERS
STAGE

43%

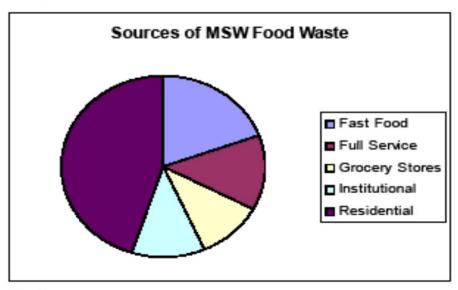
Source: Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fork to Landfill; Author Dana Gunders, Natural Resources Defense Council

10% of institutional food purchases become waste

another 4%-10% become waste before ever reaching the customer

In cafeterias, each meal tray generates ½ lb of food waste.*

Biggest Sources of Food Waste

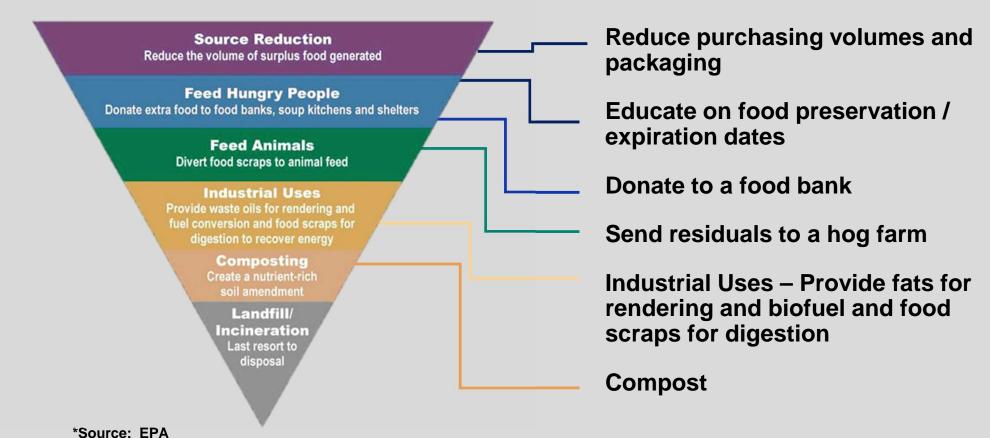

(in order)

Food Service Industry

- Commercial
 - Restaurants
 - Quick Service
 - Full Service
 - Grocery Stores
- Institutional
 - K-12, Universities, Hospitals, Nursing Homes, Prisons

Residential

Does not include agricultural and industrial food wastes



Other Benefits of Food Waste

- Removes a high water content stream from leachate production in landfills
- Improves compost characteristics of other feedstocks like yard debris
- Positive economic benefits
- Improves soil tilth when finished compost is used as an amendment
- Positive public image

How to Reduce Food Waste? What can be done with Leftover Food Waste?

Material Characteristics

	Volume	Characteristics
Leaves	160 lbs/ household /yr	C:N ratio: 80:1
	0.8 cubic yards, loose	Moisture content: 10-50%
		Density: 150-700 lbs/cy
		High carbon & mineral content
		Composts alone, but slowly, with little odor
		Stockpile to add to grass in spring/summer
Grass	1,040 lbs/ household /yr	C:N ratio: 15:1
	2.6 cubic yards, loose	Percent moisture: 60-80%
		Density: 400-800 lbs/cy
		Decomposes quickly
		Good nitrogen source
		Strong potential for odor
Brush and	300 lbs/household/yr	C:N ratio: 200-500:1
Tree	1 cubic yard, loose	Percent moisture: 40-50%
Trimmings		Density:250-500 lbs/cy
1111111111111111111111111111111111111		Very slow to break down
		Collect chipped, bulk or with leaves/grass
Food	255 lbs/household/year	C:N ratio: variable, typical 15:1
	1.64 tons/empl/yr (food service)	Percent moisture: variable
	0.71 tons/empl/yr (restaurants)	Density: 800-1000 lbs/cy
	19.29 tons/empl/yr (food processors)	Good nitrogen source
		Need to mix with leaves, potential for odor
		Significantly increases organic diversion rates

Yard waste generation factors

- Urban, rural, suburban
- Community affluence
- **&Climate**
- **❖** Maturity of trees in the area
- **❖** Average lot size
- Yard waste reduction incentives

Yard Waste Generation Rates (hh/yr)

Material	Pounds	Cubic Yards Loose
Leaves	160	0.8
Grass	1,040	2.6
Brush	300	1.0
Total	1,500	4.4

Organic Waste Generated

- 4.4 cubic yards of yard clippings per household per year
 - **❖~1500** pounds annually
 - ❖~2 to 5 paper bags per week (average)
 - ❖18%-25% of the residential waste steam
 - **❖60%** generated May September
- **❖Other organics**
 - food and soiled paper
 - ❖10%-17% of the residential waste steam

Collection of Food Waste

- **❖**Next big "gain" for recycling
- **❖**Food waste:
 - ❖ Nationally, 31.8 M tons generated, and only 2.5% diverted
 - **❖29%** of Michigan's municipal waste stream
 - Compost sites managing only 10% of that
- **❖** Yard waste:
 - **❖** Nationally, 32.9 M tons generated, 64.7% diverted
- Avoid disposal costs

Volumes & Sources Considerations

- Survey ad Pilot to collect data on participation and volumes
- Evaluate volumes of different compostable materials (FW, YW, woodchips, bioware, paper)
- In-building collection and material preparation considerations (bins, pulper, digester, compactor, dock space)

Estimating Volumes and Sources

⇔Household

FW Generation	350 lbs/hhld/yr
Food Waste Density	600 lbs/CY
FW Participation Rate	45%
YW Generation	500 lbs/hhld/yr
YW Density	350 lbs/CY
YW Participation Rate	75%

Commercial

Participation Rate	25%
FW Annual Generation (tons)	150 tons/est/yr
FW Density (lbs/cy)	600 lbs/CY

Institutional

Other Food Waste Assessment Tools:

http://www.epa.gov/foodrecovery/tools/index.htm

See EXCEL worksheets

Hospital lbs	1.8 lbs/bed/day
FW Hospital Participation Rate	80%
Prison lbs	1 lbs/inmate/day
FW Prison Participation Rate	80%
University lbs	0.35 lbs/student/day
FW University Participation Rate	80%
Public Schools lbs	0.35 lbs/student/day
FW Public Schools Participation Rate	80%

Optimizing initial mix

	Weight	Weight	Volume	Nitrogen (dry	C:N (dry	Moisture	
	(tons/year)	(lbs/year)	(CY)	weight %)	weight)	Content	Bulk Density
Expected Food Waste	8692	17384600	28974	3.1%	15	70%	600 lbs/CY
Expected Yard Waste	5625	11250000	32143	2.5%	20	50%	350 lbs/CY
Wood Chips	5000	10000000	25000	0.1%	600	50.0%	400 lbs/CY
Corrugated Cardboard	500	1000000	10000	0.1%	550	8.0%	100 lbs/CY

Carbon Dry Weight (lbs)	8,743,652
Nitrogen Dry Weight (lbs)	308,222
C:N	28.37
Desired Carbon Ratio is	30:1

See EXCEL worksheet

Moisture Weight (lbs)	2	2,874,220
Total Weight (lbs)	3	9,634,600
Moisture Content		58%
Desired Moisture Content is	55%	to 60%

Total Weight (lbs)	39,634,600
Total Volume (CY)	96,117
Total Density (lbs/CY)	412
Desired Bulk Density is	900 lbs/CY to 1200 lbs/CY

Collection Factors

- **❖** Volume, composition, participation rate
- Curbside collection or self-haul
- Separate or co-collection recyclables
 - **❖On-call brush collection**
 - **❖Separate collection for fall leaves or holiday trees**
 - **❖Type of container bags, carts**
 - **❖Type of collection vehicle** automated, vacuums
- Collection frequencies, schedules, seasonal
- Costs and funding

Commercial or Institutional Waste Collection

- Food prep wastes directly into brute/ barrel or slim jims, lined or unlined
- Sometimes run through pulper or dewatering machine, then into barrel
- Barrels rolled to dock and emptied into dumpster lined with cardboard

Commingling Materials

- single container for all organics

Advantages

- Convenience = high participation
- One collection truck
- Carts and automated loading mechanism
- Lower collection labor
- Lower overall cost of collection

- Commingled "hard" & "soft", wet wastes must all be ground at processing site
- Where plastic bags are used for collection, extra labor is required to debag
- Brush separation may be required:
 - ❖For higher product grades
 - ❖With curbside chipping

Separated Materials

brush/wood set out separately from leaves/grass/food waste

Advantages

- Increased processing efficiency
- Reduced site processing costs
- Faster decomposition of soft-only wastes
- At the processing site, wood chips can be added as needed to balance C:N

- Increases promotion and education costs
- Requires specialized trucks (e.g., compartmentalized) or 2 trucks or chipper
- Potentially more collection labor than for a commingled method
- May require separate collection routes for trucks

Loose Material Collection

- raked out to curb, no bags or carts

Advantages

- Convenient conducive to participation
- Amount of material set-out is unrestricted
- Contaminants are more visible
- ❖No container costs
- No bags to remove in processing

- Potentially greater contamination than for contained material
- Requires specialized equipment to move materials from curb to truck
- Wet material is difficult to handle, and may cause odors; materials may clog street drains
- Food waste still needs a container and collection

Contained Material Collection

- in bags or carts

Advantages

- Less equipment and potentially less labor than for loose material
- Potentially less contamination than for loose material
- Material is not litterprone or problematic for traffic, parking, sewers
- Promotes participation

- Initial capital costs for containers may be high
- May require specialized trucks (automated or semi-automated)
- Amount of material set-out may be limited to container capacity
- May need separate leaf collection program to handle the large volume of leaves in the fall

Plastic Bags

- ❖Plastic bags not recommended and in most communities, banned from use
 - ❖Can develop anaerobic conditions, odor
 - ❖Plastic blows around processing site
 - ❖Plastic fragments remain in finished compost
- Compostable plastic bags
 - Higher cost than paper bags
 - Plastic fragments can remain in finished compost if not completely decomposed
 - Can also develop anaerobic odor if left in bag

Paper "Kraft" Bags

Advantages

- Less expensive than compostable plastic bags (25¢-39¢ vs. \$1)
- Bag can be shredded by windrow turners – no debagging, less costs
- Allows airflow during collection process
- Stand upright, less likely to tear

- More expensive than traditional plastic bags (9¢)
- May lose strength under prolonged wet conditions, making handling difficult
- Non-degradable items (such as glass bottles, bricks, cans) cannot be seen through the paper

Carts and Bins

Advantages

- Fewer vehicles and workers required for collection = lower costs
- ❖32, 64 or 96-gal carts are durable
- Easy for generators
- Small 5-gallon containers can be used for oil and grease
- 2-cy dumpsters for food waste from institutions

- Initial investment is high if municipality or hauler provide carts
- Automated tipping equipment may be needed for curb carts and possibly bins
- Smaller bins have limited capacity, especially for fall leaves

Dock Collection and Upgrades

Containers rolled to dock

- Cart-swap program
- Emptied into compactor, compacting truck or dumpster lined with cardboard

Can be emptied / transported into on-site in-vessel composter

Dock Modifications

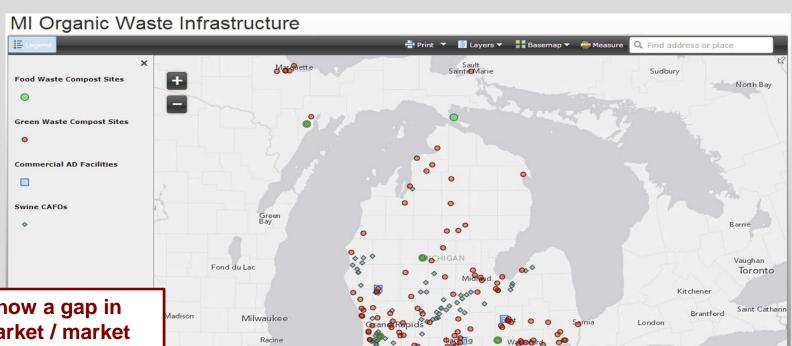
- Dumpsters
- Compactors / Electrical
- ❖Dock / Railings

Collection Equipment

- **❖General gathering**
 - Front-end loader
 - Mechanical claw truck
- **❖** Material-specific
 - Leaf vacuum truck or leaf loader
 - Mobile chipping unit for wood waste

❖Transport

- ❖Dump truck
- Rear-loading packer truck (also semi-automated)
- Automated or semi-automated side-loading truck



Collection Performance

Using Technology to Create Solutions for Diversion

Copyright @2013 E

Waukegan

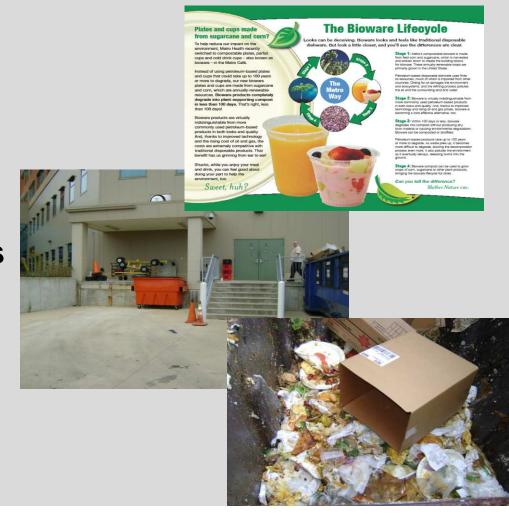
Chicago

Rockford

- Can show a gap in the market / market opportunities
- Can connect generators, haulers and processers

Case Study: University of Michigan

- ❖ Program began in 1997
 - ❖ 5 Dining Halls, 1 Catering Kitchen, 1 Coffee Shop
- **♦ 67 tons of food waste annually**
- ❖ 32-gal bins picked up 2-3 times/week
- Organics processed at WeCare / City of Ann Arbor Compost Facility - \$38/ton compost tip fee
- All organics + bioware from Business School processed at Tuthill Composting
- **❖** Significantly more organics available
 - animal bedding
 - ❖ yard waste (currently composted at UM grounds)
 - **❖** post-consumer foods and products
 - ❖ fats, oils, greases
 - ❖ soiled paper towel, napkins and cardboard
- **❖** Up to 5,269 tons plus yardwaste!



Case Study: Metro Health Hospital

- Program began in 2009
- ❖ 300-bed facility
- Six days a week, New Soil picks up two lined 2-cy dumpsters of hospital food waste + OCC (approx. 0.5 tons/day
- Delivers it to Spurt Industries Composting Facilty
- Costs about \$50/ton
- Accepts bioware and cardboard

Case Study: City of Ann Arbor Commercial and Residential

Commercial

- Semi-automated side loader
- Vegetative food waste stored in 64 and 32-gal city-provided carts
- ❖ 3x/week collection

❖ Residential:

- 96, 64 and 32-gallon Compost Carts provided for semiautomated collection of yard waste and food waste
- Weekly seasonal pickups, Apr Nov (break in winter months)
- Residents may wrap produce waste in newspaper to help keep carts clean

Thank you!

Nicole Chardoul, P.E.
Resource Recycling Systems

nchardoul@recycle.com

734-417-4387